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SOLUTION OF THE FOKKER-PLANCK EQUATION
FOR
CHARGED PARTICLE TRANSPORT IN ONE SPACE DIMENSION

Thomas A. Oliphant and Antonio Andrade
Los Alamos National Lahoratory
Los Aiam~s, New Mexico

ABSTRACT

In the study of charged particle transport in plasmas, numerical
techniques for molving the Fokker-Planck equation have been devaloped
vhich closely parallel those used in neutron transport. This wes a
natural step since the theory and methods of neutron transport have been
w21l developed. Moreover a line of treatment has'been developed tailored
to the specific requirements of transport in mirror machines. This
approach involves the assumption that the distribution function remain
cnnstant along a guiding center orbit. Diffusion techniques have been
developed in which sequential moments of the transport equation are taken
s0 as to generate a set of coupled equations. Here a method i{s developecd
which treats the traneport opurator according to the uwtandard diamond
differencing techniques of neutrcn transport, but treats the collision
terzs by a method designed to take advantage of the form of the
Fokker-Planck collision operator. 7This latter method makes use of matrix
factorization techriques. 1In tha sbsence of applied external fields, this
method consetrves particles rigorously. Deterministic methods run into
difficulty in the treatment of magnetized plaswes In cases in which the
guiding-center approximation does not apply. Thus, there are 3some
situations in which one is driven to Monte Carlo techniques which are not
a subject of this paper.



I. INTRODUCTION

In the study of charged particle trsnsport in plasmas, numerical
techniques for solving the Fokker-Planck equation have been developed
which closely paralle]l those used in neutron transport, This was a
natural step in the development of solution methcds in charged particle
transport (CPT) in view of tha facf fhat the theory and methods of neutron
transport have been well developed ’~, Moreover, since much of the
pioneering work in CPT was carried out in conjunction with the on-going
effort to build controlled fusion devices, the early methodologies
developed to solve the transport equation were made more spplicable to
those machines. In the weil known analysis of transport in mirror
machines by Killeen, et al” for example, the calculstions of spatial
changes along the magnetic field are hased on an assumption that the
distribution function of ‘ones remain approximately constant along a
guiding center orbit; an assumption which is sufficiently accuraie and
more sppropriate for low density mirror confinement systems.

Other authpors have used expansion methodl“‘s or Aiffreaion theory
techniques to solve the transport eduation. The diffusion techniques
require that sequential moments of the transpcrt equation he taken so as
to generate a coupled set of equations, and further require that a
prescription for closing that set be given. The transport problem is then
reduced to the solution of that set.

In other methodn"s, the diffsrencing and multigrouping techniques of
neutronics are directly applied to ylelid solutions to the CPYT equation by
standard slgorithms. 1In all of the methods meni!nned abcve however, the
Fokker-Planck collision term is ususlly approximated i some feshion. The
diffusion techniques, for example, usually include only s trostment of
eollisional lowing down without velocity space dispersion (“stralght-line
ulowing down")., The S, tachniques of Ref. 7 are also applied to a
Boltznann~like equation in which only strafight-line slowing down 1
considered in a deceleration term, As will be discucsed in this
presentation tha exclusion cf velocity space dispersion may lecd to very
inaccurate results.

Recently, some researchers have attempted to solve the Pokker-Planck (FP)
equation without recourse to approximations. This was done by either
reformulating the FP collision term intg a8 form which matches the
structure of a standard neutronice code such that existing co.npuurl
programs can be used directly for CPT, or by deriving crose sections
vhich simulate the slowing down of fons to be used in sxisting neutronics
codes. The dravwbacks that were found to tlhase approaches ware that the
large computer codes ware cumbarsome to modify or as in the case of Ref,
9, the existing code _tructure forced a semi-{implicit differencing of the
collision term which subsequently led to long computer runs.



More recently a method has been developed to eolve the Fokker-Planck
charged particle transport equation by simp}f and efficient meang, and
without approximation to the collision term "« In this method the kinetic
equation is integrated to yield the time dependent distribution function
of test particles fa(r,v,t) in a fully implicit manner by a rombination

of S, methodology with a matrix factorization technique. The full three
dimensional velocity space dependence along with the radial configuration
space dependence of the distribution function is ohtained as & function of
time by this method if &1l of the phase space variables are treated as
discrete. This latter method is the primary object of discussion in the
text thf& follows. More details may be found in the dissertation of A.
Andrade””,

Although the method discucsed below can be applied to cylindricslly
symmetric problems, thc essential ideas araz contained in the ephericzally
symmetric case which 1s the only one to be considered in this text,

II. THE FOKKER-PLANCK TRANSPORT EQUATION

The kinetic equaticn which characterizes the transport of charged
particles in a plssma as they suffer collisions which result in their
deflection by small sngles has come to he known as the Fckker-Planck
transport equation and is given by

2f,(r,v,t) O, pext A |, A, Af,
at +-‘—"a£+m. '3l-m.a£'5_'\_7"ﬁ—)c (2-1)
where
of
a 1
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is the collision term of the equation. <é> is the average electroststic
pote~tial at T produced by the particles at other positions while !f*t

1s the .~rce experienced by the plasma particles at r due to externally
applied ele-tromagnetic fields. Ea. (2-1), therefore {s an equation for
the time evolution of the one particle distribution function of particles
of species 'a', ss this distribution is affected by internal and external
forces and as it is affected by collisions with plasma particles of all
species 'd' withir. & given system, including collieions among its own
species 'a',

Rossnbluth, Machonald, and Judd'® first formulated the averages <Av> and
AvAv> {n Eq. (2-2) in terms of the potentisl-like functions hgp(v) end

R.b(V) as
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tering at 90° which 1s equal to 2,2, /éucou!
integrais in Eqs. (2-5) and (2-6) as
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Here I' , = (zie J4mm

InA and 1nA = ln(Ad/bo) where A, is the Debye
length [2 nbzbe2

12 and bo is the impact parameter for scat-

bVz. Defining the

L(v) = [du £, (x,u,0)|v-u|™ (2-7)
Kb(x) - [dg fb(g.g_.t)|v-u| (2~8)

the potential-like relationahip between Eqs. (2-5) and (2~6) 1s easily
shown with

v;x.b(!) - 2L, (v) (2-9)
and
Vil (v) = =gy (r,v,t). (2-10)

In this presentution, the effects of internal and external forces on
the evolution of f, will not be considered so that <4> and FPext {p
Eq. (2-1) can effectively be set equal to sgero.



III. SPHERICAL SYMMETRY IN CONFIGURATION SPACE

A symmetric, field-free, spherical plasma configuration is a parti-
cularly simpie system i3 which new techniques for solving the transport
equation can be tested. Since results of henchmark calculations in
this type of system exist In abundance, comparisons can easily be made.

To this end, consider the time evolution of a distribution
fa(r,v,u,t) of test purticles in a fully symmetric state in a spheri-
cal configuration gpace and in a spherical velocity space in which the
distribution function will only be constrained to be azimuthally sym-
metric. In this case the transport equation is written as

of

of Zr,v,u,t)
_e& ' owd 2 ¥ g2 -2 -
ot + r2 or (r fa) + rop [(1-u )fa] at )c (3-1)
vhere
af
a - - 12 2.V 3_ u -
i't")c {(— v +3UJ) (3~2)
v aV N
and
v NoTo s {A. mw, af.asz
J = §r 28 (o= f — == | } (3-3)
Z,ab Y S ol
N«T 2.1 3f 3K
u o 00 27 _(1=u") a b -
J ]z,r.b o zb{ ) o e 1}. (3=4)
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In the above equations and in the remainder ¢f thin work dimensicnless
variables are used which are defined as follows

n v t
ﬂ-r V'E— t-"l—-
0 o C

vhere N, and 1, are chosen tollgit the problem at hand and where
Co is defined to be (2kT,/m,)" “. K is Boltzmann's conz:ant,

To 18 & standsrd kinetic temperature¢ and m, is the mass
corresprnding to 1 AMU. With these scalings the scaled distribution

function is related to the unscaled distrihution hy



-~ - 3
£ fco/ﬂoo

it is found that the Fokker-~Planck transport equation retains_its

3
oriyinal form if the traditional I'_, is replaced by I' \N 1 _/C.

In equations (3-1) through (3-4) the tildes have been dropped for
brevity. Here the functions Ky and Ly of the background

distributions fy will remain isotropic for #il time and the sums over
the species 'b' will not include the species 'a' so that the treatment
of Eq. (3-1) will tecome fully linear. The background Maxwellian
distribution functions in scaied variables have the form

n
fb(u) 3203 exp (-u /vob) (3-5)
m ob
vhere vop = (Tp/Ap)Y 2.

With the definitions of K, and Ly given by Egqs. (2-7) and (2-8),
the derivatives in JV and J¥ can be computed as

aLb dn v :

v
axb 4
v, 2 u o 2uv
o - Anfo(u - ;:z]fb(u)du + 4ﬂfv =3~ £, (u)du (3-7)
2
9 Kb Y
v 2 - 2
- 4n109J!; £,(wdu + nf 5 uf, (u)du. (3-8)
v 3v
Defining the standard integrals in Eqs. (3-6) - (3-8) as
Ry (V) = fvufbdu (3-9)

Hy(v) = [gu?t, du (3-10)



v
Hya(v) = [qu'f,du, (3-11)

it is seen that the Landau-Fokker-Pianck compnnents can then be
rewritten as

v NoTo 2,2 . Bpa(V)
J = -aﬂirab _g__ Zb{x— £
b C° ) a v2

(3-12)

lafa Hb3(v)

* 3y (Tt ()
v

and

3" = ~unirab == 2y

3
b C° 2v du
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N T 2 (1-y )Bfa

X

K (3-13;

Hyq(v)
(B, - 2=+ 2y )

Since the background distributions are Maxwellian, the integrals Hy,
Hp2, and Hyj are easily evaluated as

n

exp(-vzlvz

Hbl(V) = ob)
ob

(3-14)
2?3'2v

L v

_— — 2,2
Hyp(v) = a2l 4 erf(v/voyy - 2, exp(-v" /viy) (3-15)
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Equation (3~1) can be solved by a direct finite difference method which
is similar in many respects to the S, technique used in neutron
transport. In this method the angular dependence of the distribution
function is not expanded via a complete set of functions but rather is
treated as discrete. The wav in which the methodology presented in
this chapter varies from the standard S, method iz in the treatment

of the collision physics. Here the collision effects will be solved
for separately from the streaming effects.

An operator x which will descretize all of the arguments of
fa(r,v,u,t) through the transport equation is

t r v u
+ + +
K - ;[ts 1 dt Iri 1/2 rzdr !vg+l/2 vzdv f n+l/2

y du (3-17)
i-1/2 g-1/2 n-1/2

3 3 3 3
where § = At (Ary/3)(Av /3)8u, and At =t ) -t  Ar /3 = (ri+/2 -

3 3 3 3
Tic1/2) /30 Avgl3 = (Voyrya = Vauysa)/3s AUy =ML sg T e

In this analysis thte intervals on & mesh will be centered at integer
values of the dndices s,i,g and n and the distribution function f,
will always be defined at t = tg4; i.e., implicitly, unless specified
by a subscript to be otherwise,

Applying th operator x to Eq. (3-1) yields the difference
approximation



Y
f(ri’vg’un’ts+l) - f unAvg/b

|
+ {A f -
A + +
t, ViAv3/3 1+1/2°1+41/2
-4
Avp/l» (o
A f ] + —~—— £ - a £
- - + + - -
1-1/271-1/2 v,Au by /3 n+1/2 n+l/2 n-1/2"n-1/2}

= ={ —l__[vz

3 I+
Avg/3

v 2 v
g+1/29g+172 = ¥ g=1/278-1/2
(3-18)

—(J"

u nt1/2 = Jn-1/2))

where V, = Ari/B, A1+1/2 - ri+l/2, and where the angular streaming

term has been differenced as in the S, methodology of neutronics'” in

order to preserve conservation of particles for finite sized intervals
Aup. The subscript 'a' of the test distribution has been dropped
since it 1s understood that this is an equation for f,.

By using the definitions

Notozi
Bg - Aazrab 'CT:— Hbz(vg) (3-19)
o b
N T H, (v )
- 1 oo .2, bl g 2 -
Ce 3%’95 " 2y (—2- + vgﬂbl(vg)) (3-20)
o £
.2
NTt2
oob 1 2
D = ]I (H, (v ~— H .(v.) + 2 R (v)) (3-21)
g 3 ab Cz v; b2 " g) 32 b3 g 3gbl''g

in Eqs. (3-12) and (3-13), the components of J in the collision term of
the difference approximation become

£ .. - f
Vo me a2 W
Jot1/2 2 (Bor/2farrsa * Corr/2( 5y ))

Vog+1/2 g+1/2

(3-22)



3y -3 f +C (fg _ fg'l)}
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u 2 n+l/2 n
Jn#r/2 = 20 Lk 4 0) —
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- f
H 2 n n-1
J _ = 21D [(l—u _ ) ————r i e
n-1/2 g n-1/2 Aun-1/2

The velocity grid interval edge values fgi}/2

components can be related to the centered Vfgues fg by the

interpolating relations of Chang and Cooper ~ as
fetr72 = (0 = Sy )Moy + Snpn £,
Fg1y2m Q= Soy Mg+ 80 yyp f0y

where

and

Av B

O .. ow —di L2
B2 Ly

in the JV+1/2
gh.

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

(3-2%)

(3-29)

By using these relations in Eqs. (3-22) and (3-23), the collision term

of Eq. (3-18) can be rewritten as the sum of two terms as

3.

vhere

(3-30)
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~v 4n g-1/2
q ~ {(¢ .1 -8B _.,.6
A:/3 R-1Bv ", R-1/27g-1/2)

C c
-1/2 g+l/2
+_[B 8 -3 (a-6_.,)-= - ]
g gtl/2 g+1/2 g-1/2 g-1/2 Avg-l/2 Avg+l/2
+f .[B (1 -8 ) + EEilﬁZ ]} (3-31)
g+l T g+1/2 gt+l/2 Avg+1/2
and
2
LI S PRl 2 T
Buy R m=l By s
2 2 '
. [(‘ = Vneyy2) (- bn-1/2,
n M2 Aupay2
2
(1 -w )
+ £ (3-32)
: n+l/2
Note that § is & sum of two 3-point differnce terus.
By further defining the quantities
4
Av_/4
3 '-—8—3- (3-33)
ViAv8/3
b= b Ag1 /2814172 = M-1/284-172)
(3-34)

+ lapg/2fme172 = %n-1/2fn-1/2]



and the.: combining Eqs. (3-3C) and (3-18), it 1s seen that the
transport equation can be written in the simple form

) EMe
f - th' - f. - Au . (3-35)
n

In this equation, it is seen that the collision terms are now on the
L.H.S. while the streaming terms have been eseparated off into the
R.H.S. This formulation suggests that a splitting procedure may be
used to solve for the effects of collisions and streaming on the
distribution separately and then combined in some self-consistent
fashion to yield an updated distribution.

Fa. {3-%5) can be split into two, separate, fully implicit equations of
the fo.

Ehﬁt.
[f - qAt]* = [f. - T]t -t (3-36)
n 8
and
EAAt. -
f + —AH- - Q*At. + f'. (3-37)

Here Eq. (3-36) is seen to be an equation which modifies the
distribution function £ for collision effects while using the streaming
terms as a constant known source term evaluated with quantities definad
at the previous time step while Fq. (3-37) 1s an eguation which
corrects f for streaming and uses ti.e result f* of Fq. (3-36) as q* =
q(f*) as a constant. When Fqs. (3-36) and (3~37) are solved together
vithin a given time step, the distrihbution function

f(ri,v,.un,t.,+1'1| then determined for all i,g, and n,

Consider first 2q. (1~36) and recall that q was defined as the sum of
two 3~-point terms in Eqs. (3-30)-(3-32). As such, Eq. (3-36) resembles
the differenced 2-dimenrional Poisson equation which has the form

1k 1k
!ngwlk + cng*lk - sng (3-38)

1 = n=],n,n+l

k = g-1,g,g+]



vhere the matrices £ and G contain the coefficients of the two 3-point
terms gV and g respectively and where Sng corresponds to the

source term on the R.H.S. of Eq. (3-36). Flk and le are actually

supermatrices with the properties

1k 1k
B G:Eng

(3-39)

1k k ~1k
G-+ 8G 3-40
ng g ng ¢ )

where the first pair of upper and lower indeces indicate the position
of an elemental matrix in the supermatrix and where the second pair

indf{cate an element in the elemental matrices. Heace E and G have the
forms

x
X X
x NGxNG
/x A .
Elk - X xX X
ng
X x

(3-41)

NNxNN

”,,——"




where NG iy the number of intervals on the g grid and NN is the number
of intervals on che n grid. The supervectors Yj) and Spg have the
forms

(3]
@

Y1k = ng (2-43)

X R R OH X X X X
(7]
- I - JE- B B -

S
E

The notation of Ea. (3-38) can be simplified somewhat 1if the index g is
taken to be vector index so that it can “e rewritten as

1* '
Ewn + Gl = §n , (3-44)

This equation merely indicates that each multiplication .. a superrow

of Eqs. (3=41) and (3~42), by a supercolumn of T, will be traeated
separately. The following treafgent of Eq. (3-44) 1s based upon a
method given by Buzbee, et. al. .

In general the matrix E will not be symmetric tridiagonal but a matrix
D can be found that vig} symmetrize E through a similarity

transformation ¥ = DED ', If D is allowed to operate on Eq. (3-44)
from the left, it.then takes the form

Eoj_+ GLDvy = D8 . (3-45)
It 1 fllily shown that D has a diagonal form such that it commutes

with Gn as {ndicated.

The symmetric matrix ¥ has a complete set of eigenvectors given
by !Eu - Aazu o that the vectors DY and D& can be expanded as

Dby = [ apgb, (3-46)



bs_= Z by ¢ (3-47)

Using these expansion in Eq. (3-45), it 1s found that it can be
rewritten as

1 1
[Gn + ana].la “= by * (3-4R)

Eq. (3-48) is recognized to be a tridiagonal system in the coefficients
8)q for each index a. This equation can be solved readily hy a
factori=ation of the tridiagonal system into upper and lower

of f-diagunal matrices. Tris is a standard technique in matrix
analysis, the details of which will not be given here. For an
excellent presentation of this technique, the readar is referred to
Ref. 17,

Once the ccefficients a), are determined, the solution of Ea. (3-45)
can be constructed using Eq. (3-46) as

- -1 -
*1g Z ‘1a°g €ag’ ‘ (3-49)

This is the 'intermediate' distriburion function f* which has heen
modified for collisfon effects. It is noted that for the case in which
the background plasma remains Maxwellian, the coefficients in Ea.
(3~45) remain unchanged such that the eigenvalues # 4 corresponding
eigenvectors need be computed caly once. But the construction
indicated in Bq. (3-49) must be performed at every time step since the
Alq will differ as the source teim (and therefore the (hp,) of Eq.
{3-45) changes in time. This procedure is carried out for every gone
ry in a given time step.

Eq. (3-37) remains to be solved. This equation {s actually equivalent
to Eq. (3-18) i.e,, the difference approximation except that the
collision terms on the R.H.S, are now known as q* such that

N
'('1'vs’"n't'*’> ~ % + u“Av!/a (A £ - A f ]
At ) 1+1/2°1+1/2 1-1/2"1=1/2
s ViAvl/B
(3-50)
Av“/‘

+

) 4 172 = Oy pof ] = 3,
ViADnAv:/3 n+l/2 n+1/2 n=1/2"n-1/2



Eq. (3-50) has the form of the neutron traneport equation which has
been differenced for S, treatment and as such, it can be solved as in
neutronics. To outline this method, note that Eg. (3-50) is an
equation in five unknowns f; fy4)/2, and f,_1/7, can be determined

from boundary conditions or from a previous time step. The other three
quantities can be related by some scheme so that a system of three
equations in three unknowns can be formed.

The diamond differen 2 relations

26 % £ L0 *E i (3-51)

are chosen for this purpose., It is seen in Fig. 1 that these relations
linearly interpolate between quantities defined on a topologically
rectangular mesh, Using these relations in Fq. (3-50) and solving for
f in terms of the known quantities f,.)/7 and fi4)/2 yieids

AtunAv“/h
£mlame 4 £ = —="— A7z * Aey g2/ fian 2
ViAv /3
g
AtAv“/é [
+ a +a If (3-53)
3 n+l/2 n-1/2'""n-1/2
ViAunAvg/S)
AcAv;/l.
f{ -
4 ———Ig @2 * %e172) = YalAia 2 * Aciy))).
ViAVSIB n

This equation can be used to solve for the updated distributions for
all zones 1, mtarting at the boundary of the sphere by calculating the
cell centered distributions f and then extrapolating inward for the
cell edged distributions f4.1/,. 8ince the calculation proceeds

inward toward the center of tne sphere, it should only be performed for
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¥ig. 1.--The diamcnd structure of the interpolating
procedure shown on a partial r-u mesh

angles directed inward to avoid the ac:umulation of numerical error!
1.¢., for the directions u such that =1 < u ¢ 0., A similar equation
can be derived for outward directions by considering fy4;/2 to be

unknown and again using cthe diamond difference cquations in conjunction
with Bq. (3-50) to yleld

M
Atu_Av /4
fo{quat +t +—2_K (A

+ A £
Vihv:/J 1+1/2 1-1/2

1-1/2

(N
AtAv ' /4
4 —L [0 +a a0 _
VibvnAv:IS n+1/2 n=1/2""n=1/2} (3-54)

AtAv" /4
{1+ X

ta )t u (AL, + A )]
e n+1/2 7 %n=1/2” T Va2 T B2

The outward integrations can be started by using sn isotropy condition
st the center of the ephere which {s just



f = f

r=0,n r=0

outward ’“inward

(3-55)

n = NN+l-n

outward inward .

This integration is done after all of the inward calculations have been
performed. In this way, f(r,v,u,t) is calculated at the updated time
t = tey for all z»ones, speeds, 8and angles.

In the next section, vome results obtained by this method are
presented.

I1I. RESULTS

The calculation of the energy deposited by fast test fons as they slow
down on a background plasma during the collisional transport process is
typical of the benchmark problems which have evolved within the
literature on charged particle transport, In a pellet plasma, for
exanple, it is of interest to determine how thies energy is distributed
spatially while being partitioned to the background electrons and
ions. It is also of interest to be ahle to determine the time history
of the deposition. Some of the more important applications of these
type of calculations include the treatment of fusion product transport
and the analysis of injected charged particle beams, In order to
demonstrate the matrix factorization (MF) method of the last sections,
the transport of fusion alpha particles and beam deuterons and protons
will bhe considered.

Before proceeding further, it is to be noted that in the transport
equation, tle factor T, has consistently heen . 2pt within the
summation over the species 'b'. This is because of the dependence cof T
on ¢the background species through the Coulomb logarithm as

Ink = In(ly/b,) = Inlh /(22,0 fane uy V)], (3-56)

In this work the arguments A; and A, will be approximated as

) 2E (3-57)



and

~ 38 (3-58)

which are valid approximations for cases where the electron thermal

velocity Ve is greater than the test ion velocities v, but where
th
v v « The test ion energy E in Tq. (3-57) is set to the thermal
th
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ion energy to be definite, and the HMarshak correction factor is

applied in EBq. (3-58) when applicable.

The case of 3.5 MeV fusion product alpha parti les trunsporting in a
spherical plasma is considered first. In this example, ths background
electron and hybrid D-T ion dencities will be 0.2125 x 10" kg/m” while
their temperatures are taken to be equal at 50 keV. Although here the
temperatures are set equal, the code does allow for different electron
and ion temperatures.

It 1s chosen to compare the results of the MF calculations with those
given by Mehlhorn and Duderstadt in Ref. 9 since their method also
allows for vmlocity space dispersion. In order to mstch the zoning
used in their modified neutronics code TIMFYX-FP, 13 radial zones are
used while the velocity space variables are discrztized by 4 u
directions gnd an 18 point spaed grid. The zone wid:h is taken to bhe
«7742 % 10 “w which 1s equivalent to .035), where A is the range

of alpha particles on electrons at the density and temperature given
above, Further, in this problem, the arguments of the Coulomb
logarithm are not calculated by Eqo. (3~57) and (3-58) but the values
of 1oA are set as InAg = 8.25 and InAgy = 18,56 as they were in

Ref. 9. 1The details of the energy deposition calculation are given in
In Figures 2 and 3, the fraction Ey/E, of the initial alphaparticle
energy E; depcsited per zone to the backpround electrons and ions,
reapectively, is plotted for each zone., It can be seen that the MF
nethod yields results which are in very good agreement with those
reported in Ref. 9. In both Figures 2 and 3, the peaks of the spatial
deposicion profiles occur in the same rones and are nearly {dentical in
magnitude, Similarly, the stopping leniths calculated by the MF method
enjoy close agreement to those previously reported, Althougr small
differences occur in the two methcds' calculations of the amount of
energy deposited in the first few zones to both electrons and ions, the
resulte of the MF method chould be reliable eince it does not seem to
encount.r the difficulties near lfcnlized sources that the §,
techniques used in TIMEX-FP might".
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In order to study the effects of the dispersion in velocity space which
the alpha particles undergo as they scatter on the plasma, the number
of angles NN, used in the calculations was varted. In Figures 4 and 5
the spatial deposition profiles are again given for electrons and ions
separately. It is seen that by increasing the number of directions in
which the alpha particle distribution function can be defined, for the
case of deposition to electrons, the spatial profile's peak is
decreared while deposition to the outer zones is increased. In the
case of the ions, the peak ls also diminished but shifted to the right
with the deposition to the outer zones again increasing. This behavior
is to be expected for the following reasons. Since the initially
isotropic alphe particles are at higher energies than the background
elzctrons and ions, their distribution will depart from the isotropic
forn &8 they scatter in an attempt to reach a thermal equilibrium.
Although the alpha energy may dirinish after the first few collisions
in zones near the center of the sphere, the energy is more directed in
the outward directions in these zones. They will approach a thermal
aquilibrium after enough coitlisions have occurred along their path, so
that their distribution will again acquire an ieotropic character in
the outer zones of the mesh. At this time the particles will have no
preferred direction, so that the amount of backscattering will become
the same as the amount of forward scattering, thus resulting in higher
depusition to these outer zones, That this behavior is indeed tne
cuse, is established by following the distribution of the cosine (u)
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Pig. &.--Fractional depositior. per zone to electrons
for an increasing number of directions (RN)
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of the alpha particles' velocity vertors with respect to the radial
vector as a8 function of time. In Figure 6 this spectral information is
shown for the center zone at t » 0 while the curves at other times are
appropriate to the third zone on the mesh, It is seen that the
distribution (normaligzed to unity on the ahscissa) becomes peaked
toward a positive cosina almost instantaneously, showing that the elpha
energy is highly directed toward the outer zones. As time (NT)
progresses, the particles scatter and lose their energy and the
distributicn tends toward & Maxwellian st the background temperature.
From this information, it can be concluded that by using too few angles
in this type of calculation, the results may become biased in showing
too much deposition in the first few zones and in ignoring the
backscattering effects in the outer gones.

It is interesting to note that the plots in Figure 6 contain data
points vwhich acpzar jagg This 18 due to the use of a large time
step in the glgorithm, wh..n gives rise to small fluctuations in the
distribution information, & common occurrence in some finite difference
schemes. Although this phenomenon could be detrimental in gome
algorithms, the MF method remained absolutely conservative snd
convergent.
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Fig. 6.--Angular spectra of the distribution function at
the 3rd position on the zone grid. At the first time
step (NT), the spectrs is shown for the first zone

In Pigure 7 the time dependent energy deposition history is shown for
both deposition on electrons and on ions. As a check on the accuracy
of this method, the curve ghowing the total energy fraction deposited
to both ions and electrons was calculated using the appropriate moment
of the L.H.S. of the transport equation, Eq. (3-18). It can be seen
that the code remained energy conserving.

Time B9

Fig. 7.--Time history of deposition to both electrins
and ions



The efficiency for the MF method is demonstrated in Figures 8 and
9. The same computations described above for four angles, 13 zones and

18 velocity grid points were performed using 150 time steps (NT) at a
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time increment of .01 and then carried out again using 1500 time steps
at At = ,00l. Here the time increment At is scaled to the slowing-down
time of algha particles due to electrons at 50 keV which is equal to
8.47 x 10 ° sec, It can be seen that very little accuracy is lost by
using the larger time step. The calculation using 150 time steps
required 5 seconds of CPU time on the CRAY I computer.

It 18 noted that the total deposition frection in time tends towards
unity but becomes asympto:ic at a value less thaen unity. This is, of
course, due to the fact that the alpha particle does not lose all of
its kinetic energy but only slows down to an energy defined by the
temperature at thermal equilibrium.

The energy deposited to a plasma by an injected Leam can be calculated
by introducing a distribution function characterizing the beam at the
outermost zone of the system. In the examples which follow, the zoning
used in the previous examples is retained but a delta function
distribution (in speed) defined at one ingoing angle is used to
simulate a beam entering at the boundary.

In the first example, a beam of 1 MeV deuterons impinging on D-T plasma
(at the same temperature and density as before) at the outermost zone
(zone 13) is considered. The delta function is defined at their
veloc.ty corresponding to that energy which is v = 9.823 x 10" m/sec.
In Figuregs 10 and 11, the deposition profiles are shown for the case in
which the beam consists of an initial burst of ingoing deuterons.

Since the beam velocity is much less than the electron thermal velocity
in this case, the deuterons should tend to deposit their energy on the
background ifons in greater proportion. This is seen to be the case.

0.0}
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Fig. 10.--Fraction of initial deuteron energy deposited per
sone to electrons for & beam entering at zone 1)
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In Figures 12 and 13, the deposition profiles are shown for an initial
burst of 500 keV ingoing protgns. Since the proton velocity is the
same as above (v = 9,823 x 10 m/sec) the same tendency to deposit more
anergy to the fons shoulC be observed. In addition though, since the
mass of the protons is less than that of deuterons, they are more
easily deflected and so should deposit their energy such more quickly
i.¢., within the first few zones. Again, this behavior is verified in
the figures. Both of the above calculetions required about 4.5 seconds
of CPU time on the CRAY I.
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